[word problems part 4][section 29]
(1.)  Sam has 45 coins in dimes and
quarters.   The total value
     of the coins is $7.65 .   How many coins of each kind
     does he have?
     d + q = 45
     .10d + .25q = 7.65                here is the problem
   - .10d - .10q = -4.5      multiply equation 1 thru by -.10
    ______________________
            .15q =  3.15    
subtract equations
            _____  ______
            .15     .15      
divide each side by .15
               q = 21         divide and cancel
      d + 21 = 45                replace q with 21
         -21  -21        
subtract 21 from each side
      _______________
       d    = 24           subtract
result:  24 dimes and 21 quarters
(2.)   Cliff puts quarters and nickels
aside for paying tolls.
       He has a total of 18 coins with a
total value of $2.90 .
 
       How many coins of each kind does
he have?
       n + q = 18
       .05n + .25q = 2.90                 here is the problem
      -.05n - .05q = -.90    multiply equation 1 thru by -.05
     ______________________
              .2q = 2                subtract equations
               ___ ___
               .2   .2          
divide each side by .2
                q = 10           divide and cancel
            n + 10 = 18            replace q with 10
              -10   -10       
subtract 10 from each side
        ____________________
            n       = 8           subtract
result :   8 nickels and 10 quarters
(3.)  Joe invested $5000, part at a
yearly rate of 7% and
      part at a yearly rate of 9%.   The total interest 
      earned for one year was $368 .   How much did he
      invest at each rate?
       x + y = 5000
      .07x + .09y = 368                here is the problem
     -.07x - .07y = -350         multiply eq 1 thru by -.07
   _________________________
             .02y =   18       
subtract equations
             _____   ____
              .02     .02          divide each side by .02
                  y = 900           divide and cancel
    x + 900 = 5000         replace y with 900
        -900   -900        
subtract 900 from each side
    __________________
    x           = 
4100          subtract
result:  $4100 at 7 % and $900 at 9 % .
(4.)  Two loans were taken out totaling
$35,000.   The yearly
      interest rates were 12% and 15% and
the total yearly
      interest was $4650.   Find the amount of each loan.
       x + y = 35,000
      .12x + .15y = 4650             here is the problem
     -.12x - .12y = -4200      multiply equation 1 thru by -.12
_____________________________
             .03y =   450       
subtract equations
             ____    _____
             .03     .03           divide each side by .03
              y = 15,000          divide and cancel
         x + 15,000 = 35,000    replace y with 15,000
 
             -15,000  -15,000    
subtract 15,000 fr ea side
     ____________________________
         x             = 20,000        subtract
result:  $20,000 at 12 % and 15,000 at 15
% .
(5.)  7500 tickets were sold for a
concert.   Total receipts
      amounted to $45,000 .  Tickets sold for $5.50 and $7.00 .
      How many tickets of each kind were
sold?
       x + y = 7500
      
5.5x + 7y = 45,000             
here is the problem
      -5.5x - 5.5y = -41,250    multiply eq 1 thru by -5.5
    __________________________
              1.5y =   3750   
subtract equations
              ____     ____
              1.5      1.5  
  divide each side by 1.5
                y = 2500        divide and cancel
          x + 2500 = 7500          replace y with 2500
              -2500  -2500    
subtract 2500 from each side
      ________________________
         x           = 5000      subtract
result:  5000 tickets at $5.50 per
ticket,
         2500 tickets at $7.00 per ticket
(6.)  Five full-fare bus tickets and one
half-fare ticket
      cost $90.75 .  Four full-fare tickets and two half-fare
      tickets cost 82.50 .   How much does each type of
      ticket cost?
      5f + h = 90.75
      4f + 2h = 82.50              here is the problem
     -2f - h = -41.25    multiply eq 2 thru by -1/2, cancel
      5f + h = 90.75      put this here
     ____________________
     3f 
    = 49.50    add equations
     ___      _______
      3          3        divide each side by 3
         f = 16.50       divide and cancel
       4(16.50) + 2h = 82.50   replace f with 16.50
        66 + 2h = 82.50       multiply
      - 66      - 66      
subtract 66 from each side
    ________________________
             2h = 16.50          subtract
             ___  ______
             2      2       
divide each side by 2
       
                h = 8.25      divide and cancel
result:  full-fare tickets cost $16.50
and half-fare
         tickets cost $8.25 .
(7.)   Bob makes a bank deposit of $595
with 96 five- and
      ten- dollar bills.   How many of each kind of bill
        did she deposit?
        f + t = 96
       5f + 10t = 595                 here is the problem
      -5f - 5t = -480     multiply eq. 1 thru by -5
    _____________________
           5t = 115        subtract equations
           ___  ____
           5     5         
divide each side by 5
             t = 23         divide and cancel
          f + 23 = 96     replace t with 23
             -23  -23  
subtract 23 from each side
        ___________________
           f     = 73     
subtract
result:  73 fives and 23 tens
(8.)  Ralph paid $6.60 for some 15 cent
stamps and some 20
      cent stamps.  He bought 37 stamps in all.  How many of
      each kind of stamp did he buy?
          x + y = 37 
      .15x + .20y = 6.60              here is the problem
    - .15x - .15y = -5.55       multiply eq 1 thru by -.15
    _______________________
             .05y =  1.05     
subtract equations
              ___  _______
             .05    .05         
divide each side by .05
                 y = 21          divide and cancel
 
           x + 21 = 37            replace y with 21
               -21  -21     
subtract 21 from each side
           ______________
           x        = 16        subtract
result:  Sixteen 15 cent stamps.  Twenty-one 20 cent stamps.
(9.)   There were two models of
calculators.   One model sold
       for $22.75 and the other model
sold for 15.95.   In
       all, there were 31
calculators.   The total sale of
      these 31 calculators was $576.06
.   How many of each
      model were sold?
       A + B = 31
     22.75A + 15.95B = 576.05           here is the problem
    -15.95A - 15.95B = -494.45      multiply eq 1 thru by -15.95
    ____________________________
      6.80A          = 81.60       subtract equations
      _____            _____
       6.80            6.80      divide each side by 6.80
         A = 12                 divide and cancel
     12 + B = 31                 replace A with 12
    -12       -12         subtract 12 from each side
   _________________
           B = 19          subtract
result:   12 calculators and 19
calculators
(10.)   A library charges a fixed amount
for the first day that
        a book is overdue and an
additional charge for each day
        thereafter.  Sam paid $0.75 for one book that was 7 days
        overdue and $1.95 for a book that
was 19 days overdue.
        Find the fixed charge and the
charge for each additional
       day.
        f + 6a = 0.75
        f + 18a = 1.95              here is the problem
        f + 6a =  0.75       
put this here
      ______________________
            12a = 1.20          subtract equations
            ____  ___
            12     12     
divide each side by 12
                 a = .10       divide and cancel
           f + 6(.10) = 0.75     replace a with 10
           f + .60 = 0.75          multiply
              - .60   -.60   
subtract .60 from each side
         _____________________
            f       = 
.15         subtract
result:  The fixed charge is $0.15 and
the additional charge
            is $0.10 per day.