Solve the following triangles:

(1.) $A = 75^{\circ}$; c = 21

Here is the diagram:

(i.) $\sin 75 = a/21$ use this trig equation $a/21 = \sin 75$ rearrange like this $a = 21 \sin 75$ multiply each side by 21, cancel a = 20 use calculator and round (ii.) $\cos 75 = b/21$ use this trig equation $b/21 = \cos 75$ just rearrange like this $b = 21 \cos 75$ multiply each side by 21, cancel b = 5.4 use calculator and round (iii.) A + B + C = 180 use the triangle sum theorem 75 + B = 90 = 180 make substitutions B + 165 = 180 combine like terms

(i.)	$\cos 52 = 32/c$	use this trig equation
	c cos 52 = 32	multiply each side by c, cancel
	cos 52 cos 52	divide each side by cos 52
	c = 52 use	calculator, round, and cancel
(ii.)	tan 52 = b/32	use this trig equation
	$b/32 = \tan 52$	just rearrange like this
	$b = 32 \tan 52$	multiply each side by 32, and cancel
	b = 41 use ca	lculator, round, and cancel

(iii.) A + B + C = 180 use the triangle sum theorem A + 52 + 90 = 180 make substitutions A + 142 = 180 combine like terms - 142 - 142 subtract 142 from each side A = 38 subtract results: A = 38; B = 52; C = 90

$$a = 32$$
; $b = 41$; $c = 52$

(3.) A = 35° ; c = 20

Here is the diagram:

(i.) $\sin 35 = a/20$ use this trig equation $a/20 = \sin 35$ just rearrange like this $a = 20 \sin 35$ multiply each side by 20, cancel a = 11.5 use calculator, round, and cancel (ii.) cos 35 = b/20 use this trig equation b/20 = cos 35 just rearrange like this b = 20 cos 35 multiply each side by 20 and cancel b = 16.4 use calculator, round, and cancel (iii.) A + B + C = 180 use the triangle sum theorem 35 + B + 90 = 180 make substitutions B + 125 = 180 combine like terms -125 -125 subtract 125 from each side $\overline{B} = 55$ subtract results: A = 35; B = 55; C = 90

a = 11.5; b = 16.4; c = 20

(4.) $B = 81^{\circ}$; c = 40

(i.) $\sin 81 = b/40$ use this trig equation	
b/40 = sin 81 just rearrange like this	
$b = 40 \sin 81$ multiply each side by 40, cancel	
b = 39.5 use calculator and round	
(ii.) $\cos 81 = a/40$ use this trig equation	
a/40 = cos 81 just rearrange like this	
$a = 40 \cos 81$ multiply each side by 40, cas	ncel
a = 6.257 use calculator, round, and can	cel
(iii.) $A + B + C = 180$ use the triangle sum theorem	
A + 81 + 90 = 180 make substitutions	
A + 171 = 180 combine like terms	
-171 -171 subtract 171 from each side	
A = 9 subtract	
results: A = 9 ; B = 81 ; C = 90	
a = 6.257; $b = 39.5$; $c = 40$	
(5.) $B = 15^{\circ}$; $c = 16$	

(i.) $\sin 15 = b/16$ use this trig equation
b/16 = sin 15 just rearrange like this
b = 16 sin 15 multiply each side by 16, cancel
b = 4 use calculator, round, and cancel
(ii.) $\cos 15 = a/16$ use this trig equation
a/16 = cos 15 just rearrange like this
a = 16 cos 15 multiply each side by 16, cancel
a = 15.5 use calculator, round, cancel
(iii.) $A + B + C = 180$ use the triangle sum theorem
A + 15 + 90 = 180 make substitutions
A + 105 = 180 combine like terms
-105 -105 subtract 105 from each side
A = 75 subtract
results: A = 75 ; B = 15 ; C = 90

$$a = 15.5$$
; $b = 4$; $c = 16$

(6.) $A = 41^{\circ}$; b = 3

(i.) t	an 41 = a/3	use	this trig	g equation	
a/3	= tan 41	just rearra	nge like	this	
a =	3 tan 41	multiply ea	ich side k	by 3 and ca	ancel
a =	2.6	use calcul	ator and	round	
(ii.) c	os 41 = 3/c	use this	trig equa	ation	
С	cos 41 =	3 multip	oly each s	ide by c a	and cancel
COS	41	cos 41 di	vide each	n side by d	cos 41
	c = 4	use calcula	tor and c	cancel and	round
A + B +	C = 180 u	se the triar	igle sum t	heorem	
41 + B +	90 = 180	make s	ubstituti	ons	
B + 1	31 = 180	combine like	e terms		

	-131 -	131	su	btract	131	from	each	side
B	=	49	- S	ubtract	z			
results:	A = 41	;	B = 49;	C = 90)			

a = 2.6; b = 3; c = 4

Solve the following triangle:

(7.)

(i.) cos 30 = BD/10 use this trig equation
BD/10 = cos 30 just rearrange like this
BD = 10 cos 30 multiply each side by 10 and cancel
BD = 8.7 use calculator, round
(ii.) sin 30 = CD/10 use this trig equation
CD/10 = sin 30 just rearrange like this
CD = 10 sin 30 multiply each side by 10, cancel

CD = 5 use calculator

(iii.) tan 30 = AC/10 use this trig equation
AC/10 = tan 30 just rearrange like this
AC = 10 tan 30 multiply each side by 10 and cancel
AC = 5.8 use calculator and round
(iv.) sin 30 = AD/AC use this trig equation to find AD
AC sin 30 = AD multiply each side by AC and cancel
AD = 5.8(0.5) rearrange and make substitutions
AD = 2.9 multiply
DCB + CBD + BDC = 180 use the triangle sum theorem
DCB + 30 + 90 = 180 make substitutions
DCB + 120 = 180 combine like terms

$$-120 - 120$$
 subtract 120 from each side
 $\overline{DCB} = 60$ subtract
(v.) ACD = 30 [the comlement of 60]

(8.) A bridge joins two points, B and C, on the opposite banks of a river. A highway engineer stands at point A, 300 feet from point C, and measures <CAB to be 36°.
Find the length of the line of sight from the engineer to point B on the opposite bank of the river.

Here is the diagram:

Let c = AB cos 36 = 300/c use this trig equation c cos 36 = 300 multiply each side by c and cancel $\overline{cos 36}$ $\overline{cos 36}$ divide each side by cos 36 c = 370.8 use calculator, round, and cancel AB = 370.8 replace c with AB result: AB = 370.8

(9.) The distance AB can be found by placing stakes at A, B, and C in such a way as to make <A a right angle, and by measuring AC and < C. AC is 532 meters and C is 42°. How long is AB?

$\tan 42 = AB/532$	use this trig equation
532 tan 42 = AB	multiply each side by 532
AB = 532 tan 42	rearrange like this
AB = 479 use	calculator and round

(10.) A guy wire 40 meters long runs from the ground to the top of a pole. It makes a 64° angle with the line drawn to the foot of the pole. Find the height of the pole.

sin 64 = h/40 use this trig equation $h/40 = \sin 64$ just rearrange like this $h = 40 \sin 64$ multiply each side by 40 and cancel h = 36 use calculator and round

(11.) The railroad that runs to the summit of Pikes Peak makes, at the steepest place, a 27° angle with the horizontal. How many meters would you rise in going 400 meters up this track?

sin 27 = h/400 use this trig equation

h/400 = sin 27 just rearrange like this

h = 400 sin 27 multiply each side by 400, cancel

h = 181.6 use calculator and round

(12.) A ladder 6 meters long leans against a building and makes an angle of 68° with the ground. How far from the

building is the base of the ladder?

$\sin 68 = b/6$	use this trig equation
b/6 = sin 68	just rearrange like this
b = 6 sin 68	multiply each side by 6, cancel
b = 5.56	multiply and round ; use calculator
(13.) A balloon	is anchored at point E by a cable. The

cable makes an angle of 52° with the ground. Point D, on the ground directly under the balloon, is 265 feet from E. Find the length of the cable.

Here is the diagram:

cos 52 = 265/c use this trig equation c cos 52 = 265 multiply each side by c, cancel cos 52 cos 52 divide each side by cos 52 c = 430.4 use calculator and round (14.) An 8 meter pole is leaning against a tree. The pole makes an angle of 34° with the tree. Find the distance from the foot of the pole to the foot of the tree.
Here is the diagram:

$\cos 34 = b/8$	use this trig equation
$b/8 = \cos 34$	rearrange like this
$b = 8 \cos 34$	multiply each side by 8, cancel
b = 6.6	use calculator and round

(15.) A tree is broken by the wind. The top of the tree touches the ground 13 meters from the base and makes

an angle of 29° with the ground. Find the original

height of the tree.

(i.)	tan 29 = $b/13$ use this trig equation to find b
	b/13 = tan 29 just rearrange like this
	b = 13 tan 29 multiply each side by 13, cancel
	b = 7.2 use calculator and round
(ii.)	$\cos 29 = 13/c$ use this trig equation to find c
	c cos 29 = 13 multiply each side by c, cancel
	cos 29 cos 29 divide each side by cos 29
	c = 15 use calculator, round, cancel
(iii.)	b + c use this expression to find
	the original height of the tree

- = 7.2 + 15 make substitutions
- = 22.2 add