(1.)
$$2^x = 7$$
 here is the problem

$$\log 2^x = \log 7$$
 take the $\log of each side$

$$x log 2 = log 7$$
 expand

$$\frac{1}{\log 2}$$
 $\frac{1}{\log 2}$ divide each side by $\log 2$

$$x = (\log 7)/(\log 2)$$
 cancel

$$x = 2.8$$
 use calculator

(2.)
$$2^x = 3^{x+1}$$
 here is the problem

$$\log 2^{x} = \log 3^{x+1}$$
 take the log of each side

$$x log 2 = (x + 1) (log 3) expand$$

$$x log 2 = x log 3 + log 3$$
 multiply thru

$$x log 2 - x log 3 = log 3$$
 subtract

$$x(\log 2 - \log 3) = \log 3$$
 factor

$$\frac{}{}$$
 log 2 - log 3 $\frac{}{}$ log 2 - log 3 div ea side by this

$$x = (\log 3)/(\log 2 - \log 3)$$
 cancel

$$x = -2.7$$
 use calculator

(3.)
$$7^{2x-1} - 5^{3x} = 0$$
 here is the problem

$$+5^{3x} + 5^{3x}$$
 add 5^{3x} to each side

$$7^{2x-1} = 5^{3x}$$
 add

$$(2x - 1)\log 7 = 3x \log 5$$
 expand

 $2x \log 7 - \log 7 = 3x \log 5$ multiply thru parentheses

$$2x \log 7 = 3x \log 5 + \log 7$$
 add

- 3x log 5 - 3x log 5 subtract this fr ea side

$$2x \log 7 - 3x \log 5 = \log 7 \qquad \text{subtract}$$

$$x(2 \log 7 - 3 \log 5) = \log 7$$
 factor

$$x = (log 7)/2 log 7 - 3 log 5)$$
 cancel

$$x = -2$$
 use calculator

(4.)
$$2^{3x} = 4^{x+1}$$
 here is the problem

$$\log 2^{3x} = \log 4^{x+1}$$
 take the log of each side

$$3x \log 2 = (x + 1) \log 4$$
 expand

 $3x \log 2 = x \log 4 + \log 4$ multiply thru parentheses

$$3x \log 2 - x \log 4 = \log 4$$
 subtract

$$x(3 \log 2 - \log 4) = \log 4$$
 factor

$$x = (\log 4)/(3 \log 2 - \log 4)$$
 cancel

$$X = 2$$

x = 2 use calculator

(ii.) Another way:

$$2^{3x} = 4^{x+1}$$

 $2^{3x} = 4^{x+1}$ here is the problem

$$(2)^{3x} = (2^2)^{x+1}$$
 write 4 as 2^2

$$(2)^{3x} = (2)^{2x+2}$$

 $(2)^{3x} = (2)^{2x+2}$ multiply thru parentheses

$$3x = 2x + 2$$
 cancel

$$-2x$$
 $-2x$

-2x -2x subtract 2x from each side

$$x = 2$$

x = 2 subtract

 $(5.) 5^{2x} = 7^{x+1}$

here is the problem

 $\log 5^{2x} = \log 7^{x+1}$ take the log of each side

 $2x \log 5 = (x + 1) \log 7$ expand

 $2x \log 5 = x \log 7 + \log 7$ multiply thru parentheses

- x log 7 - x log 7 subtract this from each side

 $2x \log 5 - x \log 7 = \log 7$ subtract

 $x(2 \log 5 - \log 7) = \log 7$ factor

2 log 5 - log 7 2 log 5 - log 7 div ea side by this

 $x = (\log 7)/(2 \log 5 - \log 7)$ cancel

x = 1.5 use calculator

 $(6.) 2^{0.4x} = 7$

here is the problem

 $\log 2^{0.4x} = \log 7$ take the log of each side

```
0.4 \times \log 2 = \log 7 expand
   0.4 log 2 0.4 log 2 divide each side by this
   x = (\log 7/(0.4 \log 2)) cancel
   x = 7 use calculator
(1.) \quad 2 \log x - \log 10x = 0
     \log x^2 - \log 10x = 0 condense
      log (x^2/10x) = 0 condense
       x^2/10x = 10^0
                          write in exponential form
       (x/10) = 1 simplify, cancel
       x = 10 multiply each side by 10, cancel
(2.) \quad \log (40x - 1) - \log (x - 1) = 3
      \log (40x - 1)/(x - 1) = 3 condense
      (40x - 1)/(x - 1) = 10^3 write in exponential form
   (40x - 1)/(x - 1) = 1000 cube the 10
   40x - 1 = 1000x - 1000 multiply ea side by x - 1, cancel
    -40x + 1 = -1000x + 1000 multiply thru by -1
               - 1 subtract 1 from each side
         -1
    -40x = -1000x + 999 subtract
+ 1000x + 1000x add 1000x to each side
                     999
   960x =
                            add
```

960

960 divide each side by 960

x = 999/960

cancel

x = 333/320

reduce

(3.) $\log_2 (x - 1) + \log_2 (x + 1) = 3$ here is the problem

 $log_2 (x - 1) (x + 1) = 3$ condense

 $(x - 1)(x + 1) = 2^3$ write in exponential form

 $x^2 - 1 = 8$ foil multiply combine like terms, cube the 2

+ 1 + 1 add 1 to each side

 $x^2 = 9$

add

x = 3 take square roots

(4.) $\log 2 + 2 \log x = \log (5x + 3)$ here is the problem

 $\log 2 + \log x^2 = \log (5x + 3)$ condense

 $\log 2x^2 = \log (5x + 3)$ condense

 $2x^2 = 5x + 3$ cancel the logs

-5x -5x subtract 5x from each side

 $2x^2 - 5x = 3$

subtract

-3 subtract 3 from each side

 $2x^2 - 5x - 3 = 0$ subtract

$$(2x + 1)(x - 3) = 0$$
 factor
 $x - 3 = 0$ set this factor equal to 0
 $+ 3 + 3$ add 3 to each side

(5.) $2 \log (3 - x) = \log 2 + \log (22 - 2x)$ here is the problem $\log (3 - x)^2 = \log 2(22 - 2x)$ expand

 $(3 - x)^2 = 2(22 - 2x)$ cancel the logs

 $x^2 - 6x + 9 = 44 - 4x$ multiply

+ 4x + 4x add 4x to each side

 $x^2 - 2x + 9 = 44$ add

x = 3 add

- 44 -44 subtract 44 from each side

 $x^2 - 2x - 35 = 0$ subtract

(x - 7)(x + 5) = 0 factor

x + 5 = 0 set this factor equal to 0

-5 -5 subtract this from each side

x = -5

(6.) $2 \log x - \log (30 - 2x) = 1$ here is the problem

 $\log x^2 - \log (30 - 2x) = 1$ expand

 $\log (x^2)/(30 - 2x) = 1$ condense

 $(x^2)/(30 - 2x) = 10$ write in exponential form

 $x^2 = 300 - 20x$ multiply thru by 30 - 2x, cancel

add 20x to each side

$$x^2 + 20x = 300$$
 add

 $x^2 + 20x - 300 = 0$ subtract 300 from each side

 $x^2 + 20x - 300 = 0$ subtract

 $x^2 + 20x - 300 = 0$ subtract

 $x^2 + 20x - 300 = 0$ subtract

 $x - 10 = 0$ set this factor equal to 0

 $x - 10 = 0$ set this factor equal to 0

 $x - 10 = 0$ add 10 to each side

 $x - 10 = 0$ add

 $x - 10 = 0$ set this factor equal to 0

 $x - 10 = 0$ set this factor equal to 0

 $x - 10 = 0$ set this factor equal to 0

 $x - 10 = 0$ set this factor equal to 0

 $x - 10 = 0$ set this factor equal to 0

 $x - 10 = 0$ set this factor equal to 0

 $x - 10 = 0$ set this factor equal to 0

 $x - 10 = 0$ set this factor equal to 0

 $x - 10 = 0$ set this factor equal to 0

 $x - 10 = 0$ set this factor equal to 0

 $x - 10 = 0$ subtract 1 size $x - 10 = 0$ subtract

 $x - 10 = 0$ subtract

x(x + 4)(x - 1) = 0 factor

$$x - 1 = 0$$
 set this factor equal to 0
 $+ 1 + 1$ add 1 to each side
 $x = 1$ add

(8.)
$$x^{\log x} = 100x$$
 here is the problem
$$\log x^{\log x} = \log 100x$$
 take the log of each side
$$(\log x) (\log x) = \log 100x$$
 expand

$$(\log x)^2 = \log 100x$$
 use an exponent

-
$$\log 100x$$
 - $\log 100x$ subtract this from each side

$$(\log x)^2 - \log 100x = 0$$
 subgract

$$(\log x)^2 - \log 100 - \log x = 0$$
 expand

$$(\log x)^2 - 2 - \log x = 0$$
 evaluate log 100

$$(\log x)^2 - \log x - 2 = 0$$
 rearrange terms

$$(\log x - 2) (\log x + 1) = 0$$
 factor

$$\log x - 2 = 0$$
 set this factor = to 0

$$+$$
 2 $+$ 2 add 2 to each side

$$log x = 2$$
 add

$$x = 10^2$$
 write in exponential form

$$x = 100$$
 square the 10

 $\log x + 1 = 0$ set this factor equal to 0

-1 -1 subtract 1 from each side

$$log x = -1$$
 subtract

$$x = 10^{-1}$$
 write in exponential form

$$x = 0.01$$
 raise 10 to the -1 power

results: x = 100 ; x = 0.01

(9.)
$$27^{x^2+1} = 243$$
 here is the problem

$$(3^3)^{x^2+1} = 3^5$$
 write as powers of 3

$$(3)^{3x^2+3} = 3^5$$
 multiply exponents

$$3x^2 + 3 = 5$$
 cancel

$$3x^2 = 2$$
 subtract

$$x^2 = 2/3$$
 cancel

$$x = \sqrt{2/3}$$
 $x = -\sqrt{2/3}$ take square roots

(10.)
$$2^{x+1} = 7^{x+2}$$
 here is the problem

$$\log 2^{x+1} = \log 7^{x+2}$$
 take the log of each side

$$(x + 1) (\log 2) = (x + 2) (\log 7)$$
 expand

$$x \log 2 + \log 2 = x \log 7 + 2 \log 7$$
 multiply thru

 $x \log 2 = x \log 7 + 2 \log 7 - \log 2$ subtract $-x \log 7 - x \log 7$ subtract $x \log 7$ fr ea side

x log 2 - x log 7 = 2 log 7 - log 2 subtract

 $x(\log 2 - \log 7) = 2 \log 7 - \log 2$ factor

log 2 - log 7 log 2 - log 7 div ea side by this

 $x = (2 \log 7 - \log 2)/(\log 2 - \log 7)$ cancel

x = -2.6 use calculator