(9.) The first term of arithmetic sequence is 2. The common difference is 5. Find a₆.
a_n = a₁ + (n - 1)d use this formula
a₆ = 2 + (6 - 1)(5) make substitutions
a₆ = 2 + 5*5 subtract
a₆ = 2 + 25 multiply
a₆ = 27
(21.) The fourth term of an arithmetic sequence is 13 and the 6th term is 7. Find the first term, and the common

difference.

 $13 = a_1 + (4 - 1)d \text{ make substitutions}$ $13 = a_1 + 3d \text{ subtract}$ $7 = a_1 + (6 - 1)d \text{ make substitutions}$ $7 = a_1 + 5d \text{ subtract}$ $-7 = -a_1 - 5d \text{ multiply thru by -1}$ $13 = a_1 + 3d \text{ put this here}$ 6 = -2d add equations -2 -2 divide each side by -2 -3 = d divide and cancel $13 = a_1 + 3(-3) \text{ replace d with -3}$

(i.) $a_n = a_1 + (n - 1)d$ use this formula

$13 = a_1 - 9$ multiply		
+ 9 + 9 add 9 to each side		
$21 = a_1$ add		
results: $a_1 = 21$ and $d = -3$		
(22.) The 3rd term of an arithmetic sequence is 5 and the		
eighth term is 20. Find the first term, the common		
difference, and the first three terms of the sequence.		
$a_n = a_1 + (n - 1)d$ use this formula		
$5 = a_1 + (3 - 1)d$ make substitutions		
$5 = a_1 + 2d$ subtract		
$20 = a_1 + (8 - 1)d$ make substitutions		
$20 = a_1 + 7d$ subtract		
$5 = a_1 + 2d$ put this here		
15 = 5d subtract equations		
55divide each side by 5		
3 = d divide and cancel		
$a_1 + 2d = 5$ use this equation to find a_1		
$a_1 + 2(3) = 5$ replace d with 3		
$a_1 + 6 = 5$ multiply		
-6 -6 subtract 6 from each side		

 $a_1 = -1$ subtract

results: $a_1 = -1; d = 3;$			
and: -1, 2, 5 these are the 1st 3 terms			
(23.) The 7th term of an arithmetic sequence is 6 and the 13th			
term is -18. Find the 1st 5 terms of the sequence.			
$a_n = a_1 + (n - 1)d$ use this formula			
$6 = a_1 + (7 - 1)d$ make substitutions			
$6 = a_1 + 6d$ subtract			
$-18 = a_1 + (13 - 1)d$ make substitutions			
$-18 = a_1 + 12d$ subtract			
$18 = -a_1 - 12d$ multiply thru by -1			
$6 = a_1 + 6d$ put this here			
24 = -6d add equations			
-6 -6 divide each side by -6			
-4 = d divide and cancel			
$a_1 + 6d = 6$ use this equation			
$a_1 + 6(-4) = 6$ replace d with -4			
$a_1 - 24 = 6$ multiply			
+ 24 24 add 24 to each side			
$a_1 = 30$ add			

(24.) The 4th term of an arithmetic sequence is 9 tand the 7th

term is 10. Find the 20th term.			
$a_n = a_1 + (n - 1)d$ use this formula			
$9 = a_1 + (4 - 1)d$ make substitutions			
$9 = a_1 + 3d$ subtract			
$10 = a_1 + (7 - 1)d$ make substitutions			
$10 = a_1 + 6d$ subtract			
$9 = a_1 + 3d$ put this here			
1 = 3d subtract equations			
3 3 divide each side by 3			
1/3 = d cancel			
$a_1 + 3d = 9$ use this equation to find a_1			
$a_1 + 3(1/3) = 9$ replace d with 1/3			
$a_1 + 1 = 9$ multiply			
- 1 -1 subtract 1 from each side			
$a_1 = 8$ subtract			
$a_{20} = 8 + (20 - 1)(1/3)$ use the formula, make substitutions			
$a_{20} = 8 + (19/3)$ subtract and multiply			
$a_{20} = (24 + 19)/3$ add			
$a_{20} = 43/3$ add			

(25.) Find two arithmetic means between 3 and 15.

results: 7 and 11 are two arithmetic means between 3 & 15. (27.) Find two arithmetic means between 4 and 80. $a_n = a_1 + (n - 1)$ use this formula $a_n = 4 + (n - 1)d$ replace a_1 with 4 80 = 4 + (4 - 1)d replace n with 4 and a_n with 80 80 = 4 + 3d subtract -4 -4 subtract 4 from each side 76 = 3d subtract 3 3 divide each side by 3 76/3 = dcancel 25 1/3 = d divide, change to a mixed number 4 + 25 1/3 = 29 1/3 add to 4 $29 \ 1/3 + 25 \ 1/3 = 54 \ 2/3$ add to $29 \ 1/3$ $54 \ 2/3 \ + \ 25 \ 1/3 \ = \ 80$ add results: 29 1/3 and 54 2/3 are two arithmetic means between 4 and 80

(31.) The top row of a pile of logs contains 6 logs, the row

below the top one contains 7 logs, the third row from the top contains 8 logs, and so on. If there are 45 rows, how many logs are there in the bottom row?

 $a_n = a_1 + (n - 1)d$ use this formula

 $a_{45} = 6 + (45 - 1)(1)$ make substitutions

- a₄₅ = 6 + 44 subtract and multiply
- $a_{45} = 50$ add
- (32.) Tuition costs for a certain university amount to \$8000 per year. Suppose that these costs increase by \$500 per year. How much will tuition costs be in 13 years? $a_n = a_1 + (n - 1)d$ use this formula

 $a_{13} = 8000 + (13 - 1)(500)$ make substitutions

 $a_{13} = 8000 + (12)(500)$ subtract

 $a_{13} = 8000 + 6000$ multiply

a₁₃ = 14,000 combine like terms

(33.) In one city, the fine for a 1st parking ticket offense is \$15. The city adds \$25 to the fine for each further offense. What is the fine for the 6th parking ticket? $a_n = a_1 + (n - 1)d$ use this formula $a_6 = 15 + (6 - 1)(25)$ make substitutions $a_6 = 15 + (5)(25)$ subtract

a ₆ =	15 + 125	multiply
a ₆ =	140	add

(33.) A theater has 54 seats in the last row at the back. Each of the other rows has 2 fewer seats than the row before it. If there are 17 rows of seats, how many seats are there in the 1st row?

 $a_n = a_1 + (n - 1)d$ use this formula $54 = a_1 + (17 - 1)(-2)$ make substitutions $54 = a_1 + (16)(-2)$ subtract $54 = a_1 - 32$ multiply + 32 + 32 add 32 to each side

 $86 = a_1$ add